Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Curr Issues Mol Biol ; 46(3): 2480-2496, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38534773

In the present work, we evaluated the antifungal activities of two novel ebselen analogs, N-allyl-benzisoselenazol-3(2H)-one (N-allyl-bs) and N-3-methylbutylbenzisoselenazol-3(2H)-one (N-3mb-bs). Colorimetric and turbidity assays were performed to determine the minimum inhibitory concentration (MIC) of these compounds in S1 (fluconazole-sensitive) and S2 (fluconazole-resistant) strains of C. albicans. N-3mb-bs was more active than the N-allyl-bs compound. It is noteworthy that the concentration of N-3mb-bs observed to inhibit fungal growth by 50% (18.2 µM) was similar to the concentration observed to inhibit the activity of the yeast plasma membrane H+-ATPase (Pma1p) by 50% (19.6 µM). We next implemented a mouse model of vulvovaginal candidiasis (VVC) using the S1 strain and examined the mouse and yeast proteins present in the vaginal lavage fluid using proteomics. The yeast proteins detected were predominately glycolytic enzymes or virulence factors associated with C. albicans while the mouse proteins present in the lavage fluid included eosinophil peroxidase, desmocollin-1, and gasdermin-A. We then utilized the N-3mb-bs compound (12.5 mg/kg) in the mouse VVC model and observed that it significantly reduced the vaginal fungal burden, histopathological changes in vagina tissue, and expression of myeloperoxidase (MPO). All in all, the present work has identified a potentially promising drug candidate for VVC treatment.

2.
Molecules ; 28(21)2023 Oct 31.
Article En | MEDLINE | ID: mdl-37959796

In the present work, a series of N-terpenyl organoselenium compounds (CHB1-6) were evaluated for antimycotic activity by determining the minimum inhibitory concentration (MIC) for each compound in fluconazole (FLU)-sensitive (S1) and FLU-resistant (S2) strains of Candida albicans (C. albicans). The most active compounds in the MIC screen were CHB4 and CHB6, which were then evaluated for cytotoxicity in human cervical cancer cells (KB-3-1) and found to be selective for fungi. Next, CHB4 and CHB6 were investigated for skin irritation using a reconstructed 3D human epidermis and both compounds were considered safe to the epidermis. Using a mouse model of vulvovaginal candidiasis (VVC), CHB4 and CHB6 both exhibited antimycotic efficacy by reducing yeast colonization of the vaginal tract, alleviating injury to the vaginal mucosa, and decreasing the abundance of myeloperoxidase (MPO) expression in the tissue, indicating a reduced inflammatory response. In conclusion, CHB4 and CHB6 demonstrate antifungal activity in vitro and in the mouse model of VVC and represent two new promising antifungal agents.


Candidiasis, Vulvovaginal , Female , Humans , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/metabolism , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/metabolism , Fluconazole/pharmacology , Candida albicans , Vagina/microbiology , Microbial Sensitivity Tests
3.
Biomed Pharmacother ; 168: 115754, 2023 Dec.
Article En | MEDLINE | ID: mdl-37871557

BRAF inhibitors (BRAFi) like vemurafenib (VEM) provide initial regression in mutated melanoma but rapidly develop resistance. Molecular pathways responsible for development of resistance against VEM finally converge towards the activation of oncogenic c-Myc. We identified an epigenetic approach to inhibit the c-Myc expression and resensitize BRAFi-resistant melanoma cells. ARV-825 (ARV) was employed as a BRD4 targeted PROteolysis TArgeting Chimera that selectively degrades the BRD4 to downregulate c-Myc. ARV synergistically enhanced the cytotoxicity of VEM in vitro to overcome its resistance in melanoma. Development of ARV and VEM-loaded lipid nanocomplex (NANOVB) significantly improved their physicochemical properties for oral delivery. Most importantly, oral administration of NANOVB substantially inhibited tumor growth at rate of 41.07 mm3/day in nude athymic mice. NANOVB treatment resulted in prolonged survival with 50% of mice surviving until the experimental endpoint. Histopathological analysis revealed significant tumor necrosis and downregulation of Ki-67 and BRD4 protein in vivo. Promising in vivo antitumor activity and prolonged survival demonstrated by NANOVB signifies its clinical translational potential for BRAFi-resistant melanoma.


Melanoma , Nuclear Proteins , Animals , Mice , Vemurafenib/therapeutic use , Nuclear Proteins/genetics , Proteolysis Targeting Chimera , Pharmaceutical Preparations , Sulfonamides/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/therapeutic use , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Lipids/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , Melanoma, Cutaneous Malignant
4.
Nanomedicine (Lond) ; 18(18): 1195-1206, 2023 08.
Article En | MEDLINE | ID: mdl-37724540

Background: Vulvovaginal candidiasis is primarily caused by Candida albicans (C. albicans). Here, a novel organoselenium compound (G20) was synthesized and evaluated for anti-Candida activity. Methods: Growth-inhibition studies and medium acidification assays to assess the inhibition of the yeast plasma membrane H+-ATPase (Pma1p) were carried out in vitro using G20. A self-nanoemulsifying formulation (SNEP) of G20 was prepared and evaluated for antimycotic activity in a mouse model. Results: G20 inhibited the growth of C. albicans through a mechanism that, at least in part, involves the inhibition of Pma1p. The G20-SNEP formulation significantly reduced vaginal colonization and vaginal inflammation relative to yeast-infected but untreated control mice. Conclusion: G20-SNEP exhibits potent antimycotic activity in a mouse model of vulvovaginal candidiasis.


Candidiasis, Vulvovaginal , Female , Humans , Mice , Animals , Candidiasis, Vulvovaginal/drug therapy , Isoindoles , Azoles/pharmacology , Azoles/therapeutic use , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
5.
Int J Biol Macromol ; 252: 126413, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37598823

PROteolysis Targeting Chimeras (PROTACs) showed tremendous therapeutic potential in degrading several oncoproteins including undruggable proteins. PROTACs are bifunctional molecules where one-part binds to target protein while the other end recruits protein degradation machinery. With the unveiling advancements in the field of PROTACs, we explored a combinatorial approach by developing antibody-based PROTAC (ABTAC) which may effectively degrade one of the key oncoprotein driving proliferation and progression of cancer - Epidermal growth factor receptor (EGFR). The objective of current research was to synthesize and characterize an EGFR degrading ABTAC for the treatment of non-small cell lung cancer (NSCLC). Cetuximab and pomalidomide (E3 ligase recruiting ligand) were conjugated using lysine conjugation and copper free azide-alkyne cycloaddition (CuAAC) click chemistry. Analytical characterization using reverse-phase liquid chromatography and mass spectrometry suggested conjugation of five E3-ligase inhibitor molecules/antibody. Nearly 10-30 folds reduction in IC50 was observed with ABTAC in HCC827 (EGFR sensitive) and H1650 (EGFR resistant) cells compared to cetuximab. Multicellular 3D spheroid assay strongly suggested that ABTAC induced significant apoptosis and also inhibited cell proliferation compared to control and antibody alone. Circular dichroism and surface plasmon resonance (SPR) confirmed minor alterations in the structure and receptor binding efficacy of the antibody post-conjugation.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cetuximab/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Proteolysis Targeting Chimera , Down-Regulation , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , Mutation , Proteolysis
6.
Int J Pharm ; 640: 122989, 2023 Jun 10.
Article En | MEDLINE | ID: mdl-37120123

Amorphous solid dispersions (ASD) are one of the most adopted technologies for improving the solubility of novel molecules. Formulation of ASDs using solvent free methods such as hot melt extrusion (HME) has been in the spotlight off-lately. However, early-stage formulation development is tricky and a difficult bridge to pass due to limited drug availability. Material-sparing techniques (theoretical & practical) have been used for selecting suitable polymeric carriers for formulating ASDs. However, these techniques have limitations in predicting the effect of process parameters. The objective of this study is to use both theoretical and practical material-sparing techniques to optimize a polymer for the developing Triclabendazole (TBZ) ASDs. Initial screening by theoretical approaches suggested that TBZ is highly miscible with Kollidon®VA64 (VA64) and poorly miscible with Parteck®MXP (PVA). However, results from ASDs prepared using SCFe were opposite to these predictions. ASDs prepared using either technique and both VA64 and PVA showed >200x increase in solubility. Each formulation released >85% of drug in less than 15 mins. Although the thermodynamic phase diagram suggested that VA64 was the ideal polymer for TBZ-ASDs, it has certain limitations in factoring the different elements during melt-processing and hence, practical approaches like SCFe could help in predicting the drug-polymer miscibility for HME processing.


Chemistry, Pharmaceutical , Hot Melt Extrusion Technology , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Triclabendazole , Hot Melt Extrusion Technology/methods , Polymers , Solubility , Hot Temperature
7.
Pharmaceutics ; 15(2)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36839674

Multiple daily injections via subcutaneous route are the primary modes of insulin delivery for patients with Diabetes Mellitus. While this process is invasive, painful and may cause patients to develop lipohypertrophy at injection site, the perception of fear surrounding this process causes patients to delay in initiation and remain persistent with insulin therapy over time. Moreover, poor glycemic control may often lead to acute complications, such as severe hypoglycemia and nocturnal hypoglycemia, especially in older patients with diabetes. To address the imperative need for a patient-convenient non-invasive insulin therapy, an insulin-loaded arginine-coated self-emulsifying nanoglobule system (INS-LANano) was developed for nasal delivery of insulin with a biodegradable cationic surfactant-Lauroyl Ethyl Arginate (LAE). Incorporation of LAE resulted in formation of positively charged nanoglobules with L-arginine oriented on the surface. LANano enabled binding of insulin molecules on the surface of nanoglobules via an electrostatic interaction between negatively charged α-helix and LAE molecules at physiological pH. INS-LANano showed a hydrodynamic diameter of 23.38 nm with a surface charge of +0.118 mV. The binding efficiency of insulin on LANano globules was confirmed by zeta potential, circular dichroism (CD) spectroscopy and centrifugal ultrafiltration studies. The attachment of insulin with permeation-enhancing nanoglobules demonstrated significantly higher in vitro permeability of insulin of 15.2% compared to insulin solution across human airway epithelial cell (Calu-3) monolayer. Upon intranasal administration of INS-LANano to diabetic rats at 2 IU/kg insulin dose, a rapid absorption of insulin with significantly higher Cmax of 14.3 mU/L and relative bioavailability (BA) of 23.3% was observed. Therefore, the INS-LANano formulation significant translational potential for intranasal delivery of insulin.

8.
Cannabis Cannabinoid Res ; 8(6): 1008-1018, 2023 12.
Article En | MEDLINE | ID: mdl-34918945

Introduction: The year 2020 began with the world being flounced with a wave of novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) disease, named COVID-19. Based on promising pre-clinical and clinical data, remdesivir (RDV) was the first drug to receive FDA approval and so far, it is the most common therapy for treatment of SARS-CoV-2/MERS-CoV. However, following intravenous administration, RDV metabolizes majorly by human liver carboxylesterase 1 (CES1) and marginally by the CYP3A4 enzyme in merely less than an hour. Its resultant active metabolite is a hydrophilic nucleoside with very limited accumulation within lung tissues. Therefore, there is a need to investigate strategies to overcome such premature metabolism issues and improve the antiviral efficacy of RDV at the target site. Objective: Considering the major CES1-mediated metabolism of RDV on systemic administration, we intend to explore the remarkable CES1 plus CYP3A4 inhibitory activity of cannabidiol (CBD) against in vitro microsomal metabolism of RDV to indicate its therapeutic potential as an adjuvant to RDV in the treatment and management of COVID-19. Methods: We investigated the in vitro human liver microsomal metabolism of RDV in the presence of two potential CES1 inhibitors-CBD and nelfinavir, and two standard CYP3A4 inhibitors-ritonavir (RITO) and cyclosporin A. The microsomal metabolism assay was further validated by using a well-characterized CYP3A4-selective substrate, midazolam (MDZ), in the presence of CBD and RITO. Results: Our findings depicted that RDV was rapidly and completely metabolized by human liver microsomes within 60 min. Coincubation with CBD substantially reduced microsomal metabolism of RDV and prolonged its in vitro half-life from 8.93 to 31.07 min. CBD showed significantly higher inhibition of RDV compared with known CES1 and CYP3A4 inhibitors. Inhibition of MDZ metabolism by CBD and RITO further validated the assay. Conclusions: The current study strongly suggests that CBD significantly inhibits human liver microsomal metabolism of RDV and extends its in vitro half-life. Thus, concomitant administration of CBD with RDV intravenous injection could be a promising strategy to prevent premature metabolism in COVID-19 patients.


COVID-19 , Cannabidiol , Humans , Cannabidiol/pharmacology , Microsomes, Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Midazolam/metabolism , Liver/metabolism
9.
Drug Discov Today ; 28(1): 103387, 2023 01.
Article En | MEDLINE | ID: mdl-36184017

Proteolysis targeting chimeras (PROTACs) have been extensively explored for targeted proteasomal degradation of disease-related proteins with enormous potential in the treatment of intractable diseases. However, PROTACs are poorly soluble and permeable bulky molecules facing several bioavailability challenges irrespective of the route of administration. Our review lays out crucial challenges in the delivery of target protein degraders and nanoformulation approaches to overcome physicochemical and biological hurdles that can aid in transporting these target-protein degraders to the disease site. We have elaborated on the current formulation approaches and further highlighted the prospective delivery strategies that could be probed for disease-specific targeted delivery of PROTACs.


Proteins , Proteolysis Targeting Chimera , Proteolysis , Prospective Studies , Proteins/metabolism
10.
Pharmaceutics ; 14(10)2022 Sep 23.
Article En | MEDLINE | ID: mdl-36297454

Preterm birth (PTB) is a leading cause of infant morbidity and mortality in the world. In 2020, 1 in 10 infants were born prematurely in the United States. The World Health Organization estimates that a total of 15 million infants are born prematurely every year. Current therapeutic interventions for PTB have had limited replicable success. Recent advancements in the field of nanomedicine have made it possible to utilize the vaginal administration route to effectively and locally deliver drugs to the female reproductive tract. Additionally, studies using murine models have provided important insights about the cervix as a gatekeeper for pregnancy and parturition. With these recent developments, the field of reproductive biology is on the cusp of a paradigm shift in the context of treating PTB. The present review focuses on the complexities associated with treating the condition and novel therapeutics that have produced promising results in preclinical studies.

11.
Int J Biol Macromol ; 221: 416-425, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36075305

Locally delivered pre-exposure prophylaxis (PrEP) has proven to be a promising strategy to combat Human immunodeficiency virus (HIV) transmission but several findings encountered toxicities or proved to be marginally effective in clinical settings. Therefore, innovative, multifunctional, and safer alternatives are being progressively investigated. Herein, we explored negatively charged carbohydrate, anionic pullulan (AP) as a rapidly soluble film-former and novel anti-HIV agent. Additionally, Bictegravir (BCT), an HIV integrase inhibitor was co-delivered in the form of nanomicelles for sustained antiviral activity. BCT-loaded PLGA-PEG polymeric nanomicelles (BN) were incorporated into PVA/pullulan-based film matrix comprising of 2 % w/v AP (BN-AP film). In cell-based assays, biocompatibility and TEER values for BN-AP films were similar to control while the commercial vaginal contraceptive film (VCF®) showed severe cytotoxicity and drastically reduced the tight junction integrity. Rapid disintegration of BN-AP film with >85 % drug release was observed in simulated vaginal and seminal fluid. Most importantly, AP and BN-AP film significantly inhibited HIV-1 replication with IC50 at as low as 91 µg/mL and 0.708 nM, respectively. Therefore, this study entails successful development of BN-AP film that functioned as an effective, biocompatible dual-acting PrEP formulation.


Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Female , Humans , Anti-HIV Agents/pharmacology , Administration, Intravaginal , HIV Infections/drug therapy , HIV Infections/prevention & control
12.
Pharm Res ; 39(11): 2745-2759, 2022 Nov.
Article En | MEDLINE | ID: mdl-35146591

The present work was aimed at developing an optimized and modified nanostructured lipid carrier of BRD4 protein degrading Proteolysis Targeting Chimera (PROTAC) against non-small cell lung carcinoma. PROTACs are an emerging class of anticancer molecules with nanomolar activity but associated with significant solubility challenges. Lipid-based colloidal systems like nanostructured lipid carriers are widely explored for such highly lipophilic molecules. ARV-825, a cereblon-based PROTAC was investigated for its anticancer efficacy in vitro in 2D and 3D lung cancer models. ARV-825 loaded PEGylated nanostructured lipid carriers (AP-NLC) was prepared using melt emulsification technique. ARV-825 was stabilized using Precirol® ATO5 and Captex® 300 EP/NF as the solid and liquid lipid, respectively. However, hydrophobic ion-pairing with medium chain fatty acid was required to improve drug loading and stability. A hydrodynamic diameter and polydispersity index of 56.33 ± 0.42 nm and 0.16 respectively with zeta potential of -21 ± 1.24 mV was observed. In vitro migration and colony formation assay confirmed the anticancer activity of ARV-825 alone and AP-NLC. Nearly 38% and 50% apoptotic cell population were observed after ARV-825 and AP-NLC treatment. Immunoblotting assay showed complete suppression of BRD4 and c-Myc protein expression for AP-NLC. Most importantly, significant reduction in the growth of multicellular 3D spheroid of A549 cells confirmed the effectiveness of BRD4 PROTAC and its lipid nanoparticle in non-small cell lung cancer (NSCLC). AP-NLC. Higher amount of red fluorescence throughout the spheroid surface further confirmed superior efficacy of AP-NLC in tumor penetration and cell killing.


Carcinoma, Non-Small-Cell Lung , Carcinoma , Lung Neoplasms , Nanostructures , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Carriers/chemistry , Excipients/chemistry , Lipids/chemistry , Lung/metabolism , Lung Neoplasms/drug therapy , Nanostructures/chemistry , Nuclear Proteins/metabolism , Particle Size , Proteolysis , Transcription Factors/metabolism
13.
Nanomedicine ; 37: 102428, 2021 10.
Article En | MEDLINE | ID: mdl-34217850

Vulvovaginal candidiasis (VVC), caused by Candida albicans, is a common infection in women affecting their quality of life. Standard antifungal drugs (e.g., fluconazole, itraconazole) are typically fungistatic or rendered ineffective due to drug resistance indicating an urgent need to build an arsenal of novel antifungal agents. To surmount this issue, we tested the hypothesis that the organoselenium compound ebselen (EB) possesses antifungal efficacy in a mouse model of VVC. EB is a poorly water-soluble drug and DMSO as a vehicle has the potential to exhibit cytotoxic effects when administered in vivo. EB loaded self-nanoemulsifying preconcentrate (EB-SNEP) was developed, characterized in vitro, and tested in a mouse model of VVC. In vivo studies carried out with EB-SNEP (12.5 mg/kg) showed a remarkable decrease in infection by ~562-fold compared to control (infected, untreated animals). Taken together, EB nanoemulsion proved to be an effective and promising antifungal agent.


Candidiasis, Vulvovaginal/drug therapy , Emulsions/pharmacology , Isoindoles/pharmacology , Nanoparticles/chemistry , Organoselenium Compounds/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/pathogenicity , Candidiasis, Vulvovaginal/pathology , Disease Models, Animal , Emulsions/chemistry , Female , Fluconazole/pharmacology , Humans , Isoindoles/chemistry , Mice , Microbial Sensitivity Tests , Organoselenium Compounds/chemistry
14.
Nanomedicine (Lond) ; 16(14): 1187-1202, 2021 06.
Article En | MEDLINE | ID: mdl-33982600

Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus disease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evaluated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of 71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery at 4°C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem represents an effective alternative for coronavirus disease 2019 treatment.


Lay abstract Remdesivir is one of the first drugs approved for the treatment of coronavirus disease 2019. Currently, it is administered via an injection into the bloodstream. This means that the drug circulates around the entire body and only a limited amount reaches the diseased site ­ the lungs. Frequent dosing is therefore required, which needs expert personnel and multiple hospital visits and can result in serious side effects. In this study, the authors developed specialized, nanosized particles containing the drug remdesivir that can be administered directly into the lungs. This could drastically minimize side effects, enhance efficacy and allow easy self-administration at home. The results of the study are promising but require additional investigation.


Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Drug Carriers , A549 Cells , Adenosine Monophosphate/administration & dosage , Administration, Inhalation , Aerosols , Alanine/administration & dosage , Delayed-Action Preparations , Drug Liberation , Humans , Liposomes , Nanoparticles , Particle Size
15.
Pharmaceutics ; 13(5)2021 Apr 29.
Article En | MEDLINE | ID: mdl-33946740

Carvacrol (CAR), a phenolic monoterpenoid, has been extensively investigated for its antimicrobial and antifungal activity. As a result of its poor physicochemical properties, water soluble carvacrol prodrugs (WSCPs) with improved water solubility were previously synthesized and found to possess antimicrobial activity. Here, three novel CAR analogs, WSCP1, WSCP2, and WSCP3, were tested against fluconazole (FLU)-sensitive and -resistant strains where they showed greater antifungal activity than CAR against C. albicans. The probable mechanism by which the CAR prodrugs exert the antifungal activity was studied. Results from medium acidification assays demonstrated that the CAR and its synthetically designed prodrugs inhibit the yeast plasma membrane H+-ATPase (Pma1p), an essential target in fungi. In other words, in vitro data indicated that CAR analogs can prove to be a better alternative to CAR considering their improved water solubility. In addition, CAR and WSCP1 were developed into intravaginal formulations and administered at test doses of 50 mg/kg in a mouse model of vulvovaginal candidiasis (VVC). Whereas the CAR and WSCP1 formulations both exhibited antifungal efficacy in the mouse model of VVC, the WSCP1 formulation was superior to CAR, showing a remarkable decrease in infection by ~120-fold compared to the control (infected, untreated animals). Taken together, a synthetically designed prodrug of CAR, namely WSCP1, proved to be a possible solution for poorly water-soluble drugs, an inhibitor of an essential yeast pump in vitro and an effective and promising antifungal agent in vivo.

16.
AAPS PharmSciTech ; 22(1): 9, 2020 Nov 25.
Article En | MEDLINE | ID: mdl-33241538

Death from an accidental or intentional overdose of sleeping tablets has increased exponentially in the USA. Furthermore, the simultaneous consumption of sleeping tablets with alcoholic beverages not only intensifies the effect of sleeping tablets but also leads to blackouts, sleepwalking, and death in many cases. In this article, we proposed a unique and innovative technology to prevent multi-tablet and alcohol-associated abuse of sleeping tablet. Agonist- and antagonist-loaded polymeric filaments of appropriate Eudragit® polymers were prepared using hot melt extrusion. Metoprolol tartrate and hydrochlorothiazide were used as model drugs in place of zolpidem tartrate (agonist-BCS class I) and flumazenil (antagonist-BCS class IV), respectively. Crushed filaments were converted into a tablet with a novel rapidly soluble co-processed alkalizing agent. Dissolution studies of single tablet and multiple tablets (5) in fasted state simulated gastric fluid (FaSSGF) confirmed that the release of the agonist was significantly (p < 0.0001) reduced in multi-tablet dissolution. Furthermore, the release of antagonist was significantly higher when tablet was exposed to FaSSGF+20% ethanol and various alcoholic beverages. Thus, appropriate use of Eudragit® polymer's chemistry could help design a tablet to prevent the release of agonist in case of overdose and simultaneous release of antagonist when consumed with alcohol.


Drug Overdose , Ethanol/administration & dosage , Humans , Polymers/chemistry , Polymethacrylic Acids , Sleep Aids, Pharmaceutical/administration & dosage , Solubility , Tablets
17.
Int J Pharm ; 590: 119944, 2020 Nov 30.
Article En | MEDLINE | ID: mdl-33011254

Prescription opioid abuse also known as opioid epidemic has been an ever-growing problem in the United States. It has been associated with numerous emergencies and mortality with significant burden on healthcare system. Amongst various approaches proposed by FDA, development of an abuse deterrent formulation is one of the key strategies to address this opioid crisis. Existing abuse deterrent technologies have several deficiencies which enable abusers to manipulate/bypass it. The proposed study aims to develop and optimize an abuse-deterrent immediate release bilayer film (ADRIFT). A novel material with distinct process engineering was employed to achieve immediate drug release with nasal/intravenous abuse deterrent properties. Drug layer (DL) composed of a rapidly soluble film forming polymer - polyvinyl alcohol (PVA) while various solvent system and biocompatible polymers were screened to incorporate sodium polyacrylamide starch (KPX) in abuse deterrent layer (AL). Mechanical analysis of ADRIFT suggested that individual excipients played significant role in improving the mechanical strength of ADRIFT. Spontaneous formation of highly viscous gels in different solvents and resistance to mill into fine powder support the injection and snorting abuse deterrent potential, respectively. Immediate release (>85% release) was achieved in < 30mins, indicating that there was no interference between either of the layers towards their specific purposes. Hence, our novel yet simple ADRIFT oral film technology could potentially be useful in manufacturing immediate release abuse-deterrent formulation of opioid drugs.


Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Drug Compounding , Drug Liberation , Excipients , Humans , Opioid-Related Disorders/prevention & control , Technology , United States
18.
Int J Pharm ; 589: 119863, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32911046

Epidemiological findings have discussed recurrent and persistent vulvovaginal candidiasis to be a major manifestation of HIV infected women. Conversely, women with vulvovaginal candidiasis have higher risk of acquiring HIV transmitted during intercourse. Common treatments for such conditions include combined antiretroviral and antifungal therapy. Drug-Drug interaction is a major problem encountered due to common CYP450 metabolic pathway of azoles and antiretroviral drugs. Ebselen (EB), lipophilic, organo-selenium compound has demonstrated promising anti-HIV and anti-fungal activity. The aim of current research was to develop and characterize a rapidly soluble and non-cytotoxic vaginal film of ebselen which could serve dual purpose of treating vulvovaginal candidiasis and pre-exposure prophylactic (PrEP) against HIV. Ebselen/cyclodextrin polymer/Soluplus® (1:10:10) ternary complex (EßpolySol) showed 200 fold enhancement in aqueous solubility and no degradation of EB in thermogravimetry analysis. EßpolySol film with tensile strength of 33.12 ± 1.98 N/cm2 disintegrated within 30 sec, presented instant drug release with no apparent precipitation in simulated vaginal fluid. EßpolySol film showed compatibility with HEC-1A monolayer and HeLa cells compared to VCF®. EßpolySol film showed MIC of 20 µM against Candida species and IC50 of 0.71 µM against HIV.


Candidiasis, Vulvovaginal , HIV Infections , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Azoles , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/prevention & control , Cellulose , Cyclodextrins , Female , HIV Infections/drug therapy , HeLa Cells , Humans , Isoindoles , Organoselenium Compounds , Polyethylene Glycols , Polymers , Polyvinyls
19.
Colloids Surf B Biointerfaces ; 194: 111174, 2020 Oct.
Article En | MEDLINE | ID: mdl-32540766

Preexposure prophylaxis (PrEP) using oral or vaginal microbicide is an emerging and effective strategy to prevent HIV transmission. Vaginal film is becoming more acceptable and a convenient dosage form compared to cream, gel and suppository. Extremely poor aqueous solubility of efavirenz (EFV) limits its use as vaginal microbicide. The aim of this study was to develop and evaluate a monomeric surfactant free, rapidly soluble vaginal film of EFV (EZ film). EZ film was prepared using a tetrafunctional block polymer (Tetronic 1107), carrageenan and polyvinyl alcohol (PVA) by solvent evaporation method. First, different solubilizers were screened for EFV solubility, in vitro cytotoxicity and cell membrane integrity assay on HeLa cells. Optimized film was characterized for solid state, mechanical strength, epithelial integrity, in vitro drug release in simulated vaginal fluid (SVF), simulated seminal fluid (SSF) and in vitro anti-HIV activity. Optimized EZ film showed a particle size of 48 ±â€¯3.8 nm with PDI of 0.299. Differential scanning colorimetry (DSC) thermogram suggested the complete amorphization of EFV within the film. EZ film rapidly disintegrated (30 s) with complete release of EFV in SVF and SSF. The film was found to be non-toxic to HeLa cells and showed similar anti-HIV-1 activity as that of EFV in DMSO. EZ film did not show any significant change in the TEER value in HEC 1A cell line. Hence, the findings from the current study strongly suggest that the EZ film could be a cost-effective and convenient dosage form for PrEP of HIV.


Anti-HIV Agents , HIV Infections , HIV-1 , Alkynes , Anti-HIV Agents/pharmacology , Benzoxazines/therapeutic use , Cyclopropanes , Female , HIV Infections/prevention & control , HeLa Cells , Humans
20.
Eur J Pharm Sci ; 148: 105323, 2020 May 30.
Article En | MEDLINE | ID: mdl-32259677

Superficial mycoses are the fungal infections of skin, hair and nail which affect thousands of people worldwide. Emerging resistance to azole antifungals is a common problem in the treatment of superficial or systemic fungal infection. Ebselen (EB), an organoselenium compound, has demonstrated promising activity against pathogenic yeasts. EB showed negligible dynamic and kinetic solubility in water (~ 4.2 µg/mL) which severely limits the scope of conventional formulations. The objective of present study was to develop and characterize a novel topical nanoemulgel of EB for enhancing solubility and permeability. Based on saturation solubility study, EB loaded self-nanoemulsifying preconcentrate (EB-P) was prepared using Dimethylacetamide, Kolliphor® ELP and Medium chain triglyceride which spontaneously formed 54.82 ± 1.26 nm size nanoglobules with zeta potential of -1.69 mV. Nanoemulgel was prepared by homogenous dispersion of EB-P in various gel/ointment bases. Scanning electron microscopy images showed significant drug precipitation in nanoemulgels prepared without Soluplus®. Rheological study confirmed shear thinning behavior of Soluplus® based HPMC K4M (SBH) gel. EB-P loaded SBH showed 2.3 and 5-fold higher Strat-M® deposition of EB compared to HPMC gel and Aquaphor®, respectively. EB-P showed marked anti-fungal activity at 20 µM against Candida albicans and Candida tropicalis while terbinafine was ineffective even at 100 µM concentration. Thus, topical nanoemulgel of EB could be a promising alternative to existing therapy for treatment of candidiasis.


Antifungal Agents/pharmacology , Azoles/pharmacology , Candidiasis/drug therapy , Drug Delivery Systems/methods , Mycoses/drug therapy , Organoselenium Compounds/pharmacology , Administration, Topical , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Emulsions , Humans , Isoindoles , Nanoparticles/chemistry , Skin/metabolism , Solubility
...